# **Solutions - Homework 2**

(Due date: February 3rd @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

#### PROBLEM 1 (38 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from  $c_0$  to  $c_n$  (or  $b_0$  to  $b_n$ ). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts)

| Example (n=8):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| ✓ 54 + 210<br>H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓ 77 - 194 Borrow out! → ☐ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        |
| $54 = 0 \times 36 = 0  0  1  1  0  1  1  0  + \\ 210 = 0 \times D2 = 1  1  0  1  0  0  1  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77 = 0x4D = 0 1 0 0 1 1 0 1 - 194 = 0xC2 = 1 1 0 0 0 1 1 0            |
| Overflow! → 1 0 0 0 0 1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0 0 0 1 0 1 1                                                       |
| ✓ 23 + 403<br>✓ 103 + 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>✓ 77 - 128</li> <li>✓ 199 - 107</li> </ul>                   |
| n = 9 bits<br>0 0 0 0 1 0 1 1 1 0<br>No Overflow<br>0 0 0 0 0 1 0 1 1 1 0<br>0 0 0 0 0 1 0 1 0 1 1 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0<br>0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n = 8 bits<br>Borrow out!                                             |
| 23 = 0x17 = 0 0 0 0 1 0 1 1 1 + 403 = 0x193 = 1 1 0 0 1 0 1 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77 = 0x4D = 0 1 0 0 1 1 0 1 - 128 = 0x80 = 1 0 0 0 0 0 0 0 0          |
| 423 = 0x1A7 = 1 1 0 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0 \times CD = 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1$                         |
| <b>n = 8 bits</b><br>$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10$ | n = 8 bits<br>No Borrow Out ອິລິຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊີຊ |
| 103 = 0x67 = 0 1 1 0 0 1 1 1 + 204 = 0xCC = 1 1 0 0 1 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199 = 0xC7 = 1 1 0 0 0 1 1 1 -<br>107 = 0x6B = 0 1 1 0 1 0 1 1        |
| Overflow! → 1 0 0 1 1 0 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $92 = 0 \times 5C = 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0$                    |

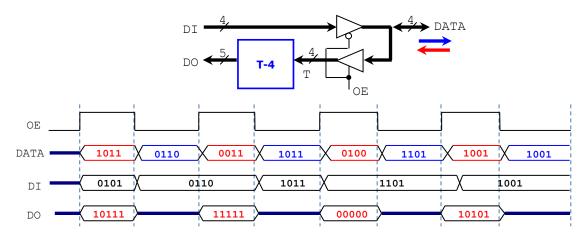
b) We need to perform the following operations, where numbers are represented in 2's complement: (24 pts)

| u co | PC         |                | the following                      | operations,           | where humbers         | Juic                  | ' CP'                               | cocneca                                                                                                                            |                       |
|------|------------|----------------|------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| -61  | +          | 128            | -                                  |                       | $\checkmark$          | -126                  | +                                   | 263                                                                                                                                |                       |
| 225  | +          | 31             |                                    |                       | $\checkmark$          | -511                  | _                                   | 167                                                                                                                                |                       |
| 256  | -          | 257            |                                    |                       | $\checkmark$          | 137                   | +                                   | 886                                                                                                                                |                       |
|      | -61<br>225 | -61 +<br>225 + | -61 + 128<br>225 + 31<br>256 - 257 | -61 + 128<br>225 + 31 | -61 + 128<br>225 + 31 | -61 + 128<br>225 + 31 | -61 + 128 ✓ -126<br>225 + 31 ✓ -511 | $\begin{array}{c} -61 + 128 \\ 225 + 31 \end{array} \qquad \checkmark \begin{array}{c} -126 + \\ \checkmark \\ -511 - \end{array}$ | 225 + 31 ✓ -511 - 167 |

- For each case:
  - ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
  - ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands.
  - $\checkmark~$  Determine whether there is overflow by:
    - i. Using  $c_n, c_{n-1}$  (carries).
    - ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
  - ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result?

## ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

| n = 9  bits C <sub>9</sub> ⊕C <sub>8</sub> =1<br>Overflow! $f(1) = 1 + 1 + 1 + 128 = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $n = 10 \text{ bits}$ $C_{10} \oplus C_{9} = 0$ No Overflow $\begin{array}{c} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ -126 & = & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & + \\ 263 & = & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 137 & = & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-61+128 = 67 \in [-2^8, 2^8-1] \rightarrow$ no overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-126+263 = 137 \in [-2^9, 2^9-1] \rightarrow \text{no overflow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $n = 9 \text{ bits}$ $C_{9} \oplus C_{8} = 1$ $Overflow!$ $225 = 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $n = 10 \text{ bits}$ $C_{10} \oplus C_{9} = 1$ Overflow! $-511 = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ $225+31 = 256 \notin [-2^8, 2^8-1] \rightarrow \text{overflow!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1 0 1 0 1 1 0 1 0<br>-511-167 = -678 ∉ [-2 <sup>9</sup> , 2 <sup>9</sup> -1] → overflow!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| To avoid overflow:<br>n = 10 bits (sign-extension)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To avoid overflow:<br>n = 11 bits (sign-extension)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \mathbf{C}_{10} \oplus \mathbf{C}_9 = 0 \\ \text{No Overflow} \end{array} \qquad \begin{array}{c} \mathbf{P} & \mathbf{P} \\ \mathbf{S}^{2} & $ | $ \begin{array}{c} c_{11} \oplus c_{10} = 0 \\ \text{No Overflow} \end{array} \qquad \begin{array}{c} \hline 1 & \hline 1 & \hline 2 & \hline 2 & \hline 3 & $ |
| 225+31 = 256 $\in$ [-2 <sup>9</sup> , 2 <sup>9</sup> -1] $\rightarrow$ no overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -511-167 = -678 ∈ $[-2^{10}, 2^{10}-1] \rightarrow$ no overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $n = 10 \text{ bits}$ $C_{10} \oplus C_{9} = 0$ No Overflow $-257 = 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $n = 11 \text{ bits}$ $C_{11} \oplus C_{10} = 0$ No Overflow $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $-257+256 = -1 \in [-2^9, 2^9-1] \rightarrow \text{no overflow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 137+886 = 1023 $\in$ [-2 <sup>10</sup> , 2 <sup>10</sup> -1] $\rightarrow$ no overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |


c) Perform the multiplication of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts) ✓ 0101×0111, 0101×1001, 1100×1010

|                                                      | 0 1 0 1 x<br>1 0 0 1 | 0 1 0 1 x<br>0 1 1 1          |     | 0 1 0 0 x<br>0 1 1 0    |
|------------------------------------------------------|----------------------|-------------------------------|-----|-------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1                    | 0 1 0 1<br>0 1 0 1<br>0 1 0 1 |     | 0 0 0 0<br>1 0 0<br>0 0 |
| 0 1 0 0 0 1 1                                        | 0 1                  | L O O O I I                   | 0 1 | 1000                    |
| 0 1 0 0 0 1 1                                        | 1 0                  | 011101                        | 0 1 | 1 0 0 0                 |

#### PROBLEM 2 (7 PTS)

• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-4, with the result having 5 bits. T is a 4-bit signed (2C) number.

For example: if T=1010  $\rightarrow$  DO = 1010 - 0100 = 11010 + 11100 = 10110.



### PROBLEM 3 (29 PTS)

- In these problems, you MUST show your conversion procedure. **No procedure = zero points**.
  - a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (9 pts.) ✓ -255.6875, 31.625, -128.6875.
    - +255.6875 = 011111111.1011  $\rightarrow$  -255.6875 = 10000000.0101 = 0xF00.5
    - +31.625 = 011111.1010 = 0x1F.A
    - □ +128.6875 = 010000000.1011  $\rightarrow$  -128.6875 = 101111111.0101 = 0xF7F.5
  - b) Complete the following table. The decimal numbers are unsigned: (6 pts.)

| Decimal | BCD          | Binary     | Reflective Gray Code |
|---------|--------------|------------|----------------------|
| 127     | 000100100111 | 1111111    | 1000000              |
| 186     | 000110000110 | 10111010   | 11100111             |
| 512     | 010100010010 | 100000000  | 110000000            |
| 230     | 001000110000 | 11100110   | 10010101             |
| 234     | 001000110100 | 11101010   | 10011111             |
| 875     | 100001110101 | 1101101011 | 1011011110           |

c) Complete the following table. Use the fewest number of bits in each case: (14 pts.)

|         | REPRESENTATION |            |            |  |  |  |
|---------|----------------|------------|------------|--|--|--|
| Decimal | 2's complement |            |            |  |  |  |
| -120    | 11111000       | 10000111   | 10001000   |  |  |  |
| -88     | 11011000       | 10100111   | 10101000   |  |  |  |
| 465     | 0111010001     | 0111010001 | 0111010001 |  |  |  |
| -64     | 11000000       | 10111111   | 1000000    |  |  |  |
| -15     | 1001111        | 10000      | 10001      |  |  |  |
| -64     | 11000000       | 10111111   | 1000000    |  |  |  |
| -125    | 11111101       | 10000010   | 10000011   |  |  |  |

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design

8 bits

ŝ

Address

0x40800000

0x40800001

. . .

. . .

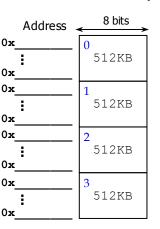
0x40BFFFFF

#### PROBLEM 4 (26 PTS)

- a) What is the minimum number of bits required to represent: (2 pts)
  - ✓ 32678 memory addresses in a computer?
    - $[\log_2 32678] = 15$
- $\checkmark$  Numbers between 0 and 2048?
- ✓  $[\log_2(2048 + 1)] = 12$
- b) A microprocessor has a 32-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
  - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? 1KB = 2<sup>10</sup> bytes, 1MB = 2<sup>20</sup> bytes, 1GB = 2<sup>30</sup> bytes

Address Range:  $0 \times 00000000$  to  $0 \times FFFFFFFF$ . With 32 bits, we can address  $2^{32}$  bytes, thus we have  $2^22^{30} = 4$ GB of address space

- A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has assigned the addresses 0x40800000 to 0x40BFFFFF to this memory device.
  - What is the size (in bytes, KB, or MB) of this memory device?
  - What is the minimum number of bits required to represent the addresses only for this memory device?


As per the figure, we only need 22 bits for the address in the given range (where the memory device is located). Thus, the size of the memory device is  $2^{22} = 4MB$ .  $\begin{array}{c}
10100 & 0000 & 1000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 &$ 

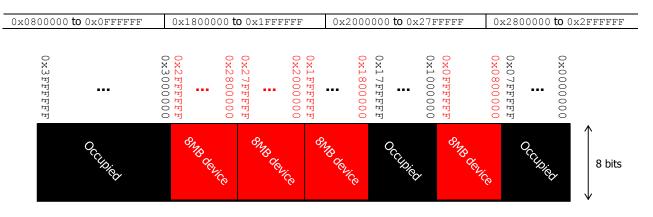
c) A microprocessor has a memory space of 2 MB. The size of the memory contents of each address is 8 bits (1 byte). (7 pts)

✓ What is the address bus size (number of bits of the address) of this microprocessor? Since 2 MB = 2<sup>21</sup> bytes, the address bus size is 21 bits.

- ✓ What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor?
  - With 21 bits, the address range is 0x000000 to 0x1FFFFF.
- The figure (right) shows four memory chips that are placed in the given positions:
   Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (5 pts)

8 bits Address 0 0000 0000 0000 0000 0000: **0x000000** 0 0 0000 0000 0000 0000 0001: 0x000001 512KB . . . 0111 1111 1111 1111 1111: 0x07FFFF 0 0 1000 0000 0000 0000 0000: **0x080000** 0 1000 0000 0000 0000 0001: 0x080001 512KB . . . 1111 1111 1111 1111 1111: **OxOFFFF** 0 1 0000 0000 0000 0000 0000: 0x100000 2 1 0000 0000 0000 0000 0001: 0x100001 512KB . . . 1 0111 1111 1111 1111 1111: 0x17FFFF 1 1000 0000 0000 0000 0000: **0x180000** 1 1000 0000 0000 0000 0001: **0x180001** 512KB 1 1111 1111 1111 1111 1111: **0x1FFFF** 




d) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (11 pts)
 What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor?

Address space:  $0 \times 0000000$  to  $0 \times 3FFFFFF$ . To represent all these addresses, we require 26 bits. So, the address bus size of the microprocessor is 26 bits. The size of the memory space is then  $2^{26}$ =64 MB.

- If we have a memory chip of 8MB, how many bits do we require to address 8MB of memory? (1 pt.)

 $8MB = 2^{23}$  bytes. Thus, we require 23 bits to address only the memory device.

- We want to connect the 8MB memory chip to the microprocessor. For optimal implementation, we must place those 8MB in an address range where every single address share some MSBs (e.g.: 0x000000 to 0x07FFFFF). Provide a list of all the possible address ranges that the 8MB memory chip can occupy. You can only use any of the non-occupied portions of the memory space as shown below. (8 pts)

